skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ivory, Megan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We explore the potential for hybrid development of quantum hardware where currently available quantum computers simulate open Cavity Quantum Electrodynamical (CQED) systems for applications in optical quantum communication, simulation and computing. Our simulations make use of a recent quantum algorithm that maps the dynamics of a singly excited open Tavis-Cummings model containing N atoms coupled to a lossy cavity. We report the results of executing this algorithm on two noisy intermediate-scale quantum computers: a superconducting processor and a trapped ion processor, to simulate the population dynamics of an open CQED system featuring N = 3 atoms. By applying technology-specific transpilation and error mitigation techniques, we minimize the impact of gate errors, noise, and decoherence in each hardware platform, obtaining results which agree closely with the exact solution of the system. These results can be used as a recipe for efficient and platform-specific quantum simulation of cavity-emitter systems on contemporary and future quantum computers. 
    more » « less
    Free, publicly-accessible full text available December 22, 2025